
A novel algorithm for co-synthesis of wireless
client-server systems using preference vectors

Mohammad Mehdi Hassani , Vahid Jalali

 Islamic Asad University Aiatollah Amoli Branch,Amol,Iran

Abstract—Embedded systems are used all over our society.
Current estimates indicate that over 90 percent of worldwide
computers are embedded systems [1]. As the complexity of
system design increases, use of pre-designed components,
provides an effective way to reduce the complexity of synthesized
hardware. Hardware-Software co-synthesis is the process of
partitioning an embedded system specification into hardware
and software modules in order to meet performance, power
consumption and cost goals. While the design problem of systems
that contain processors and ASIC chips is not new, computer
aided synthesis of such heterogeneous or mixed systems poses
challenging problems because of the differences in model and
rate of computation by application-specific hardware and
processor software. One of the areas that are investigated
recently is the simultaneous co-synthesis of client and server
processing elements in real time embedded client server systems.
In this paper we propose an improvement on COWLS algorithm
to take into account preference and peak power consumption
information.

Keywords—embedded systems, low power consumption, wireless
systems, client server systems.

I. INTRODUCTION

Most digital systems (e.g. real-time embedded systems)
used for dedicated applications consist of general-purpose
processors, memory and application-specific ICs (ASIC). In
addition to being application-specific, such systems are also
designed to respect constraints related to meet relative timing
deadlines of their actions, hence these are referred to as real-
time embedded systems.

There is a significant body of available work on hardware-
software co-design. The main body of hardware-software co-
design consists of four problems:

� Architecture selection: determine the communication
architecture including memory structure and interconnection
network structure

� Component selection: determine the processing elements
to be used. For hardware modules, an implementation of each
task should be selected.

� Partitioning and scheduling: partition the input tasks into
processing elements and perform static scheduling to
determine the execution times of tasks.

� Performance evaluation: evaluate the quality of solution
and check whether design constraints are met. Hardware-
software co-synthesis is the automated synthesis of hardware-
software embedded systems. Work in hardware-software co-
design focuses on providing a designer with tools and

guidelines which ease the exploration of available
implementation options.

Two distinct approaches have been used for distributed
system co-synthesis: optimal and heuristic. Hardware-
software co-synthesis involves various steps such as allocation,
scheduling and performance estimation. Both allocation and
scheduling are known to be NP-complete. Therefore, optimal
co-synthesis is computationally a very hard problem. In the
optimal domain, the two approaches are mixed integer linear
programming

(MILP) and exhaustive. MILP solution has the following
limitations:

� it is restricted to one task graph
� it does not handle preemptive scheduling
� it requires determination of the interconnection topology

upfront
� because of complexity, it is suitable only for small task

graphs

Exhaustive enumeration of all possible solutions is also

impractical for large task graphs.
Heuristic co-synthesis methods cannot guarantee the

optimality of the answer. There are two distinct approaches in
the heuristic co-synthesis domain: iterative and constructive.
Iterative procedure considers only one type of communication
link and does not allow mapping of each successive instance
of a periodic task to different processing elements (PE).
Constructive co-synthesis procedure does not support
communication topologies such as bus, LAN etc., and it uses a
pessimistic performance estimation technique. It is also not
suitable for multi-rate embedded systems. Power consumption
is not been optimized in any of these co-synthesis techniques.

In short words, the hardware-software co-synthesis problem
is intractable. Presently, only non-exhaustive optimization
algorithms are capable of solving large problem instances of
distributed, embedded systems in a reasonable amount of time.
Researchers have tackled variants of the co-synthesis problem
with iterative improvement algorithms, constructive
algorithms, simulated annealing algorithms, evolutionary
algorithms and a rapid sub-optimal timing constraints solver.

II. COWLS ALGORITHM

Unlike most of distributed, heterogeneous embedded
systems co-synthesis algorithms, COWLS algorithm is based
on simultaneous synthesis of client and server. However,
independent synthesis of client and server will produce similar
results as the previous work.

Mohammad Mehdi Hassani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 840-842

840

The COWLS algorithm models three main types of
resources: processing elements, communication resources and
memory. Processing elements are considered to be general
purpose or special- purpose processors which are all capable
of executing available tasks.

There exist two types of processing elements: client PEs
and server PEs. There are multiple characteristics associated
with each PE type. Characteristics considered in the COWLS
algorithm consist of price, idle power consumption.
Considering the problem formulation discussed above and
given the client-server system requirements in the form of a
set of task graphs, as well as the attributes of the PEs, memory,
and communication resources available, COWLS attempts to
synthesize client-server systems which meet the requirements
with minimum price, client power consumption and soft
deadline. In the case of hard deadline violation the solution is
no more valid, however when a soft deadline violation occurs,
the system will be still valid and the aim will be to minimize
the response time.

Architecture’s expenses depend on the manner in which
resources are used in its edifice. Therefore, by attempting to
meet real-time constraints, one ensures that high speed PEs,
which are tailored to the tasks required, are used for tasks
which lie along critical paths in the task graphs. By attempting
to minimize price, one ensures that PEs, which are capable of
carrying out the required tasks with minimal price, are used.
By attempting to minimize client power consumption, one
minimizes the number of power intensive tasks run on power-
hungry PEs located on the client. Of course, some of these
goals conflict with each other. For this reason, a single run of
COWLS generates multiple solutions which explore the trade-
offs among different costs.

After the co-synthesis is carried out for the client and
servers together, the cost of the design is estimated by
multiplying the cost of client by number of clients and cost of
the server by the number of available servers. If the only
important cost is the client cost, the number of servers is set to
zero in the evaluation process i.e. the server cost is multiplied
by zero.

Independent synthesis of client and server is similar to co-
synthesis problem for distributed, heterogeneous embedded
system with two types of processing elements used for
presenting client and server.

III. OPTIMIZATION

Optimizations for different costs of a system can be
achieved by finding a single solution and then running
constructive or iterative improvements on it. There exists
many ways to find an optimal solution among different
proposed solutions. One famous way is to use a cost function
that brings into account relative importance of all factors to
evaluate relative optimality of a solution. Another solution is
to rank each solution based on its costs and choose the best
solution after ranking. In the COLWS algorithm we use the
ranking method to find the optimal solution. We need a
hierarchy in finding the optimal solution.

IV. ENHANCEMENTS ON COWLS

In the COWLS algorithm, we have two types of processing
elements, server PEs and clients PEs. There exists a unique
table associated with each PE type indicating performance of
each task on that PE type as well showing that if it is possible
to execute this task on this type of processing element.
Formulation notation and exploration is discussed in the
model formulation section above. A factor that can influence
and improve the quality of solutions and amount of CPU time
required for the co-synthesis action, is to bring into account
the preference of the designer in binding procedure. The
preference of the designer may be because of previous
experimental results e.g. it may be proven in the previous
experiments that a particular task is better to be done on the
client than on the server.

P: Preference vector
P = {p(i,j) | 0<i< Nt, 0<j<NPE}
p(i,j) : Preference to do the task i on the processing element

j Another factor that may help improve the algorithm and
make it more practical is to add the peak power consumption
information in the co-synthesis process in order to gain
improvements on packaging cost. The peak power information
can be formulated to use as below;

PPV: Peak power vector
PPV = {pp(i,j) | 0<i< Nt, 0<j<NPE}
pp(i,j): Peak power value of the task ti when running on the

processing element type j The third improvement is to bring
into account is the definition of exclusion vector for each task,
which specifies whether certain tasks can co-exist on the same
processing element.

Each of the matters discussed above are considered in the
following solution and added to the COWLS algorithm with
slight divergence.

V. EXPERIMENTAL RESULTS

The proposed methodology is implemented using C++. The
C++ program used for this simple synthesis tool is
implemented by me. It is consist of a core code that is used to
represent the task graph and system requirements using the
questions asked from the user. The next step will be to
complete the user interface in order to graphically display the
characteristics and requirements of a system.

Different co-synthesis algorithms can be added to the core
code as daemons and can be run by selecting the co-synthesis
algorithm. The daemon will run on the specified model, ask
questions needed to complete the synthesis of the model and
produce results based on the co-synthesis algorithm and model
characteristics. The different improvements proposed for the
COWLS algorithm are implemented independently. First, the
preference problem is implemented. It is shown that the
processing time needed to complete the synthesis action
acquired by time function in C++ shows enormous amount of
decrease when preference is available. It is because of the
elimination of some of states required processing. The
decrease in time was proportional to the portion of preferred
tasks on processing elements.

Mohammad Mehdi Hassani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 840-842

841

The peak power information is also used to provide
packaging costs in the proposed method without imposing a
bing burden on algorithm. The exclusion vector is not yet
implemented in experiment. But it will also decrease the CP U
time needed to complete the synthesis action.

The experiment is run on a simple task graphs proposed by
me. But if one requires results with applications on real life,
can use TGFF which is a kind of tool used for creation of
different problem instances. It is not guaranteed that all
problem instances used generated by TGFF are solvable. For a
number of examples, multiple non-dominated solutions may
be produced by each design run, as in hand written
experiments.

VI. CONCLUSION

There are several algorithms for hardware-software co-
synthesis of distributed, heterogeneous embedded systems.
Among these algorithms the only one that simultaneously
synthesizes the client and server requirements is the COWLS
algorithm. COWLS automatically synthesizes embedded
client-server architectures. It uses a multi objective
evolutionary algorithm to simultaneously produce multiple
solutions which trade off different costs. It optimizes cost,
average client power consumption, and soft deadline
violations under hard real-time constraints and constrained
client-server communication bandwidth. The experimental
results show that COWLS frequently makes design decisions
which are similar to those which would be intuitive to a
human designer. However, it occasionally makes counter-
intuitive decisions which are preserved if they assist in the
evolution of non-dominated solutions. The COWLS algorithm
is frail in it cannot bring into account the preference of the
designer that can reduce the synthesis time and effort. Another
factor that may help COWLS improve is to consider peak

power consumption as well. The third improvement is to bring
into account is the definition of exclusion vector for each task,
which specifies whether certain tasks can co-exist on the same
processing element. This feature may help the algorithm better
decide about the tasks co-existing on the same PE.

The proposed algorithm is implemented using C++ and the
results show colossal decrease in the CPU time used for
synthesis as well as better results for packaging. Another
problem that I think is interesting to be continued is to
consider only one wireless communication media s it is for
common cellular networks and try to solve the problem just
with the tasks assigned to each PE.

REFERENCES
[1] Jecob levman, Gul Khan, Javad Alirezaie, “Hardware-Software Co-

synthesis of bus architecture embedded devices,” VLSI systems, IEEE
transactions on , 2004

[2] Dave, B.P.; Lakshminarayana, G.; Jha, N.K.; “COSYN: Hardware-
software cosynthesis of heterogeneous distributed embedded systems,
“ Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
Vol 7, Issue 1, pp.92 – 104, march 1999

[3] Giovanni De Micheli, Rajesh K. Gupta, “Hardware-Software Co-
Synthesis for Digital Systems, ”

[4] El-Kharashi, M.W., El-Malaki, M.H., Hammad, S., Salem, A. and
Wahdan, A.; “Towards automating hardware/software co-design,”
System-on-Chip for Real-Time Applications, 2004.Proceedings. 4th
IEEE International Workshop on, pp. 189 – 92, July 2004

[5] Dick, R.P.; Jha, N.K.; ”COWLS: hardware-software co-synthesis of
wireless lowpower distributed embedded client-server systems,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, Vol 23, Issue 1, pp 2 – 16, Jan. 2004

[6] Jha, N.K.; Dick, R.P.; “COWLS: hardware-software co-synthesis of
distributed wireless low-power embedded client-server systems,” VLSI
Design, 2000; Thirteenth International Conference, pp. 114 – 120, Jan
2000

[7] Dave, B.P.; Lakshminarayana, G.; Jha, N.K.; “Cosyn: Hardware-
software Cosynthesis Of Embedded Systems,” Design Automation
Conference, 1997. Proceedings of the 34th pp. 703 -8, June 1997

Mohammad Mehdi Hassani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 840-842

842

